Pulsar Variability and the Global Magnetosphere

Alice K. Harding
NASA Goddard Space Flight Center

Observed pulsar variability

- Spin-down state changes (γ-ray, X-ray and radio)
- Mode switching
- Intermittent pulsars
- [Glitches]

Spin-down state changes - γ-ray PSR J2021+4026

Simultaneous decrease in γ -ray flux (20%) and increase in spin-down rate (4%)

Allafort et al. 2013

Change in pulse profile after change in $\dot{\mathcal{V}}$

Spin-down state changes - γ-ray PSR J2021+4026

Now possibly returning to previous state (Ng et al. 2016)

Light curve modeling before and after 1st state change – Emission moves higher in magnetosphere? (C. Venter)

Spin-down state changes – B0540-69

- 36% increase in spin-down rate
- No change in X-ray flux

Marshall et al. 2015

Spin-down state changes – radio pulsars

Lyne et al. 2010

- Correlated changes in pulse width and spin-down rate
- Pulsars fluctuate between two stable spin-down states on ~year timescales

$$\frac{\Delta \dot{v}}{v} \sim 0.3\% - 10\%$$

 Meta-stable states of magnetosphere/current flow?

Pulse profile and spin-down changes

Lyne et al. 2010

- Darker/lighter profiles correspond to higher/lower v state
- Spin-down rate larger when core component of the radio profile is brighter
- In high v state, precursor is weaker and interpulse is stronger

PSR B0740-28 – Link between magnetosphere and NS interior?

Profile shape and spin-down rate become stronger

after glitch (Keith et al. 2013)

55000

MJD

Change in frequency derivative (10⁻¹⁵ s⁻²)

1.5

0.5

-0.5

-1

-1.5

-2

54500

PSR J1119-6127 – profile change after a glitch

- Pulse profile changed from usual single to double following large glitch (Weltevrede et al. (2011)
- Post-glitch \dot{v} smaller

Intermittent pulsars – B1931+24

- Bimodal spin-down states
- Radio on/off states: larger/smaller spin-down rates – 3/2 ratio
- Different magnetosphere/ charge density states?
- Change it particle flux/ pulsar wind?

Intermittent pulsars – J1841-0500 and J1832+0029

J1841-0500: $\dot{v}_{on} = 2.5 \ \dot{v}_{off}$

J1832+0029: $\dot{v}_{on} = 1.8 \ \dot{v}_{off}$

Multifrequency mode switching – B0943+10 Hermsen et al.

- Simultaneous changes in radio and X-ray emission
- B mode: radio pulse bright: X-ray emission is unpulsed & mostly nonthermal or thermal (Mereghetti et al. 2013)
- Q mode: radio pulse weak: the X-ray emission shows an additional pulsed thermal component

Inter-pole communication

B1055-52 and B1702-19: phase-locked flux modulation of MP and IP in phase delayed by 2.5P and 0.5P

B1822-09: Coordinated mode switching - in Q mode IP turns on when MP component turns off!

Gil et al. 1994

How do poles communicate with each other?

Weltevrede et al. 2007, 2012

Global pulsar magnetospheres

Larger current flow → larger spin-down rate (Harding et al. 1999)

$$T \approx \frac{2I_{pc}B_0R_{pc}^2}{3c}$$

Color: charge density, Streamlines: magnetic field

Resistive pulsar magnetospheres

Drift velocity

Conductivity

$$J = c\rho \frac{\mathbf{E} \times \mathbf{B}}{B^2 + E_0^2} + \sigma \mathbf{E}_{\parallel}$$

As conductivity increases:

- Charge and current density increase
- Current sheet gets stronger
- Field lines get straighter
- Spin-down power increases

Kalapotharakos, Kazanas, Harding & Contopoulos 2012

Spin-down and magnetosphere conductivity

Intermittent pulsars:

On state : high σ, near force-free

$$L = 4\pi^2 I \frac{\dot{P}}{P^3}$$

Off state: low σ, near vacuum

Kalapotharakos, Kazanas, Harding & Contopoulos 2012

Li, Spitkovsky & Tchekhovskoy 2012

Conductivity and phase-resolved spectra

$$\frac{dN}{dE} \propto E^{-\Gamma} e^{-\frac{E}{E_{cut}}}$$

Matching dissipative models to Fermi light curves and spectra for 8 bright pulsars (Brambilla et al. 2015)

Observed

Model: $\alpha = 60^{\circ}$, $\zeta = 50^{\circ}$, $\sigma = 10\Omega$

Trends with conductivity

The σ values that best describe each of the 8 bright pulsars (with published phase-resolved spectra) show an increase with the spin down rate \dot{E} and a decrease with the pulsar age, expected if pair cascades are providing the magnetosphere conductivity (σ).

Spin-down rate vs σ

Modes of pair creation

Harding & Muslimov 1998

 Curvature radiation pair front

High pair multiplicity complete screening

· Inverse Compton scattering pair front

Low pair multiplicity

incomplete screening

Polar cap pair death lines

Harding & Muslimov 2002

Partially screened gaps

Szary et al. 2011

For high surface B, pulsars are near critical T for free surface emission

Switch between vacuum and partially screened gaps

Szary et al. 2015

Pair cascades vs. current

Sub-Goldreich-Julian currents – 0 < J/J_{GJ} < 1

NO pair cascades

Super- Goldreich-Julian currents – J/J_{GJ} > 1

Pair cascades

Anti-GoldreichJulian currents - J/
J_{GJ} > 0

Pair cascades

Timokhin & Arons 2013

Pair modes and the global magnetosphere

Structure of magnetosphere and acceleration regions depends on rate of pair injection (conductivity)

Particle-in-cell simulations:

Varying uniform injection of neutral plasma from 4, 8 and 16 particles per cell Brambilla et al. 2015

Near force-free

E_{||} concentrates near current sheet

Near vacuum

E_{||} (color) widespread Field lines near dipole

Summary

- Spin-down changes, intermittency
 - Different magnetosphere states stable up to years
 - Global changes driven different conductivity (current, plasma injection)?
- Mode switching
 - Modes of polar cap pair creation (CR or ICS)?